A gallium nitride-based device has a first GaN layer and a type II quantum well active region over the GaN layer. The type II quantum well active region comprises at least one InGaN layer and at least one GaNAs layer, wherein the InGaN comprises a graded molar In concentration.

19 Claims, 9 Drawing Sheets
FIG. 3A

Type-I In$_{0.15}$Ga$_{0.85}$N QW

FIG. 3B

Type-II In$_{0.15}$Ga$_{0.85}$N-GaN$_{0.98}$As$_{0.02}$ QW
FIG. 4A

Type II InGaN/GaNAs QW

\[\Psi_c \]

\[\lambda = 450.9 \text{-nm} \]

FIG. 4B

25 Å In\(_{0.15}\)Ga\(_{0.85}\)N

5 Å In\(_{0.15}\)Ga\(_{0.85}\)N

10 Å GaN\(_{0.98}\)As\(_{0.02}\)
FIG. 5A

![Graph showing the variation of wavelength (\(\lambda\)) and transition rate (\(\Gamma_{e\text{-}hh}\)) with As-content.](image)

- In\(_{0.15}\)Ga\(_{0.85}\)N/GaN\(_{1-x}\)As\(_x\) Type-II QW

FIG. 5B

![Schematic diagram of a quantum well structure.](image)

- 25 Å In\(_{0.15}\)Ga\(_{0.85}\)N
- 5 Å In\(_{0.15}\)Ga\(_{0.85}\)N
- 10 Å GaN\(_{1-x}\)As\(_x\)
FIG. 6A

FIG. 6B
FIG. 8A

FIG. 8B
Graded Type II InGaN/GaNAs QW
\[\Gamma_{e-hh} = 65.9\% \]
\[\lambda = 515.6\text{-nm} \]

FIG. 9A

10 Å In\(_{0.15}\)Ga\(_{0.85}\)N
12 Å In\(_{0.3}\)Ga\(_{0.7}\)N
5 Å In\(_{0.2}\)Ga\(_{0.8}\)N
6 Å In\(_{0.37}\)Ga\(_{0.63}\)N
10 Å GaN\(_{0.92}\)As\(_{0.08}\)

FIG. 9B
Graded Type II InGaN/GaNAs QW
Ψ_e-hh = 69.9%
λ = 528.99-nm

FIG. 10A

10 Å In_{0.1} Ga_{0.9} N
6 Å In_{0.35} Ga_{0.65} N
5 Å In_{0.28} Ga_{0.72} N

FIG. 10B
GRADED IN CONTENT GALLIUM NITRIDE-BASED DEVICE AND METHOD

This application claims the benefit of U.S. Provisional Application No. 60/870,831, filed 19 Dec. 2006, which is incorporated herein by reference.

BACKGROUND OF THE INVENTION

The invention relates to a gallium nitride-based device and method. More particularly, the invention relates to a graded In-content quantum well device and method.

A quantum well (QW) is a potential boundary that confines particles to a planar, substantially two-dimensional region. Each layer in a multiple quantum well structure has a very small thickness. The electrons and holes in the layer cannot move freely in the direction of thickness and are substantially confined two-dimensionally in a plane perpendicular to the thickness direction. The two-dimensional confinement increases bound energy of Coulombic electron and hole attraction so that excitons occur under heat energy at room temperature.

A QW can be formed as part of a semiconductor by having a material, such as gallium arsenide sandwiched between two layers of a wider bandgap material such as aluminium arsenide. A quantum well effect can be achieved in a device with alternating tens of hundreds of two kinds of very thin semiconductor layers with different band gaps. Such structures can be grown by molecular beam epitaxy (MBE) and chemical vapor deposition (MO-CVD). These procedures can provide a layer down to molecular monolayer size.

Because of a quasi two dimensional nature, electrons in a quantum well have a sharper density of state than bulk materials. As a result, quantum well structures are in wide use in diode lasers. They are also used to make HEMTs (High Electron Mobility Transistors), which are used in low-noise electronics.

Quantum well-based emitters (LEDs and diode lasers) in the blue, green, and red regime are important for solid state lightings and medical applications. These applications require highly efficient blue, green, and red diodes integrated in a single semiconductor chip. However only low efficiency can be attained with typical gallium nitride-based quantum wells such as InGaN-based QWs, particularly as emission wavelength is extended beyond green color into red color.

The GaN-based quantum well semiconductor suffers from two main issues. First is high defect or dislocation density, and second is large charge separation in the quantum well.

High defect density can be caused by lattice mismatch strain and immature epitaxy of the nitride-material system leading to very high threading dislocation density, thus this results in high nonradiative efficiency. The large charge separation in quantum well results in low radiative recombination rate and low optical gain.

The drawings illustrate various gallium nitride-based devices. FIG. 8A shows conduction and valence band lineup of a type-II InAs0.53Ga0.47N—GaAs0.88As0.12 QW. The QW hole is confined in the center GaNAs QW layer and the peaks of the electron and hole wavefunctions coincide with one another giving rise to high electron-hole wavefunction overlap \(\Gamma_{e-h} \approx 68.9\% \). However as shown by FIG. 8B, for In-content beyond 18%, the effect of the polarization-induced electric field is so significant, that steep bending of the valence band edge is caused. As a result of this steep bending, hole confinement is shifted and the hole is now confined in the bottom InGaN QW layer (no longer confined in the center GaNAs layer). This shift in hole confinement leads to spatial separation of the hole and electron wavefunction peaks. This results in detrimental reduction in overlap, \(\Gamma_{e-h} \) down to ~35.5% in the FIG. B example.

There is a need for a higher performing gallium nitride-based device characterized by a reduced overlap in type II InGaN—GaNAs QWs with greater than 18% In content.

Brief Description of the Invention

The invention relates to a higher performing gallium nitride-based device with reduced overlap in type II InGaN—GaNAs QWs with greater than 18% In content. According to the invention, a gallium nitride-based device comprises a first GaN layer and a quantum well active region over the GaN layer comprising at least one InGaN layer comprising a graded molar In concentration.

In an embodiment, the invention is a quantum well (QW) active region, comprising at least one InGaN layer comprising a graded molar In concentration.

In another embodiment, the invention is a method for making a gallium nitride-based device comprising: providing a semiconductor substrate; and forming on the substrate a succession of layers to provide a type-II active region over the substrate, comprising at least one InGaN layer comprising a graded molar In concentration and at least one GaNAs layer adjacent a GaN barrier layer.

In another embodiment, the invention is an optoelectronic device comprising: a multilayer semiconductor structure including a GaN layer and an active region, the active region comprising at least a hole quantum well layer of InGaN comprising a graded molar In concentration and electron quantum well layers adjacent to the hole quantum well layer at least one of which comprises GaNAs to provide a type II quantum well structure, wherein the electron quantum well layers and hole quantum well layer form a first quantum well stage, and wherein the active region comprises a plurality of quantum well stages adjacent to each other having the same structure as the first quantum well stage, and including a transitional layer of GaN between each quantum well stage.

In another embodiment, the invention is a semiconductor laser comprising: (a) a multilayer semiconductor structure comprising a GaN layer and an active region comprising at least one quantum well layer comprising InGaN comprising a graded molar In concentration and at least one electron quantum well layer adjacent to the hole quantum well layer that comprises an GaNAs layer comprising 1.5 to 8% As concentration to provide a type II quantum well structure; and (b) an optical feedback structure to provide lasing action in the active region.

In another embodiment, the invention is a method for making an optoelectronic device, comprising: providing a GaN layer; forming an active region over the GaN layer, the active region comprising at least one InGaN layer comprising a graded molar In concentration and at least one GaNAs layer adjacent a GaN barrier layer; and forming portions electrically coupled to the active region and adapted for exciting the active region.

In still another embodiment, the invention is a method for manufacturing a semiconductor device, comprising: providing a GaN layer; forming an active region over the GaN layer, the active region comprising a type II InGaN—GaNAs quantum well adjacent a GaN barrier layer, wherein the InGaN comprising a graded molar In concentration; growing a layer over the active region while annealing the active region; and providing portions of the optoelectronic semiconductor device electrically coupled to the active region and adapted for exciting the active region.
In still another embodiment, the invention is a method for making an optoelectronic device, comprising: providing a GaN layer; selecting an As content to provide a target emission wavelength for an optoelectronic device active region, forming the active region over a GaN layer, the active region comprising at least one InGaN layer comprising a graded molar In concentration and at least one GaNAs layer adjacent a GaN barrier layer, wherein the GaNAs layers comprise the selected As content; and forming portions electrically coupled to the active region, and adapted for exciting the active region.

In still another embodiment, the invention is a method for generating optical emission from an optoelectronic device, comprising providing a GaN layer; forming an active region over the GaN layer, the active region comprising an InGaN—GaNAs quantum well adjacent a GaN barrier layer, wherein the InGaN comprising a graded molar In concentration; forming portions electrically coupled to the active region and adapted for exciting the active region; and exciting the active region to produce optical emission.

In still another embodiment, the invention is a gallium nitride-based device, comprising a first GaN layer and a type II quantum well active region over the GaN layer comprising multiple InGaN layers and GaNAs layers, wherein the multiple InGaN layers comprise an In concentration that is graded from InGaN layer to InGaN layer.

In still another embodiment, the invention is a type II quantum well (QW) active region, comprising a GaNAs layer sandwiched between two InGaN layers, wherein the InGaN layers comprise an In concentration that is graded from InGaN layer to InGaN layer.

In still another embodiment, the invention is a method for making a gallium nitride-based device comprising: providing a semiconductor substrate; and forming on the substrate a succession of layers to provide a type-II active region over the substrate, comprising multiple InGaN layers and GaNAs layers, wherein the multiple InGaN layers comprise an In concentration that is graded from InGaN layer to InGaN layer.

In still another embodiment, the invention is an optoelectronic device comprising: a multilayer semiconductor structure including a GaN layer and an active region, the active region comprising multiple InGaN layers and GaNAs layers, wherein the multiple InGaN layers comprise an In concentration that is graded from InGaN layer to InGaN layer and electron quantum well layers adjacent to the hole quantum well layer at least one of which comprises GaNAs to provide a type II quantum well structure, wherein the electron quantum well layers and hole quantum well layers form a first quantum well stage, and wherein the active region comprises a plurality of quantum well stages adjacent to each other having the same structure as the first quantum well stage, and including a transitional layer of GaN between each quantum well stage.

In another embodiment, the invention is a method for making an optoelectronic device, comprising: providing a GaN layer; forming an active region over the GaN layer, the active region comprising multiple InGaN layers and GaNAs layers, wherein the multiple InGaN layers comprise an In concentration that is graded from InGaN layer to InGaN layer; and forming portions electrically coupled to the active region, and adapted for exciting the active region.

In another embodiment, the invention is a method for manufacturing a semiconductor device, comprising: providing a GaN layer; forming an active region over the GaN layer, the active region comprising a type II InGaN—GaNAs quantum well adjacent a GaN barrier layer, the type II InGaN—GaNAs quantum well comprising multiple InGaN layers and GaNAs layers, wherein the multiple InGaN layers comprise an In concentration that is graded from InGaN layer to InGaN layer; growing a layer over the active region while annealing the active region; and providing portions of the optoelectronic semiconductor device electrically coupled to the active region and adapted for exciting the active region.

In another embodiment, the invention is a method for making an optoelectronic device, comprising: providing a GaN layer; selecting an As content to provide a target emission wavelength for an optoelectronic device active region, forming the active region over a GaN layer, the active region comprising multiple InGaN layers and GaNAs layers, wherein the multiple InGaN layers comprise an In concentration that is graded from InGaN layer to InGaN layer and at least one GaNAs layer adjacent a GaN barrier layer, wherein the GaNAs layer comprises the selected As content; and forming portions electrically coupled to the active region and adapted for exciting the active region.

BRIEF DESCRIPTION OF THE DRAWING

FIGS. 1A and 1B are schematics of type I and type II quantum well structures;

FIGS. 2A and 2B are graphs showing electron-hole wavefunction overlap;

FIGS. 3A and 3B are graphs showing energy band lineup;

FIG. 4A is a graph of electron-hole wavefunction overlap of the schematic FIG. 4B quantum well structure;

FIG. 5A is a graph showing As-content affect on wavelength λ and electron-hole wavefunction overlap of the schematic FIG. 5B quantum well structure; and

FIG. 6A is a graph of In-content affect on wavelength λ and electron-hole wavefunction overlap of the schematic FIG. 6B quantum well structure;

FIG. 7 is a sectional view of an active region of a laser diode structure; and

FIG. 8A, FIG. 9A and FIG. 10A are graphs of affects on electron-hole wavefunction overlap of the schematic FIG. 8B, FIG. 9B and FIG. 10B quantum well structures.

DETAILED DESCRIPTION OF THE INVENTION

The term “quantum well” (QW) used herein refers to a thin-layer structure comprising alternate layers consisting of a first semiconductor layer with a thickness smaller than the de Broglie wavelength of about 200 Å to 300 Å with respect to electrons or holes and at least a second semiconductor layer with a band gap greater than that of the first semiconductor layer. A “substrate” is an underlying template or substrate can such as a sapphire template, an Si substrate, SiC substrate or ZnO substrate.

A semiconductor structure may be formed by sandwiching a semiconductor thin layer of a narrow band gap between semiconductor layers of a broad band gap. If a single semiconductor thin layer constitutes a quantum well for both, electrons and holes, the quantum well is called a type 1 quantum well. In this case, the semiconductor layer of a narrow band gap is called a well layer, and the semiconductor layers of a broad band gap are called barrier layers. A type 1 multi-quantum well structure can be formed by alternately laminating semiconductor layers of narrow and broad band gaps.

A type II quantum well structure has a first semiconductor layer forming a quantum well for electrons, a second semiconductor layer forming a quantum well for holes formed on the first semiconductor layer and third semiconductor layers sandwiching the first and second semiconductor layers as barrier layers to the electrons and holes. A type II multi-
quantum well structure can be formed by alternately laminating first semiconductor layers, second semiconductor layers and third semiconductor layers.

The invention may be embodied in various types of optoelectronic devices including amplifiers, light emitting diodes and edge emitting and surface emitting lasers that incorporate optical feedback to provide lasing action. The invention may find application in solid state lighting, solid state displays, lasers, light emitting diodes (LEDs), biomedical therapy and diagnostic devices, medical lasers, eye surgery devices and DVD lasers.

The invention provides a type II InGaN—GaNAs quantum well for realizing a large optical gain active region for high brightness/efficient LEDs and low-threshold lasers in the visible regime, covering in one embodiment, an emission wavelength of 420-nm (blue) up to 650-nm (red).

In an embodiment, the invention relates to an optoelectronic device that includes a GaN layer and a type II quantum well active region. The active region can comprise at least an InGaN hole quantum well layer and electron quantum well layers adjacent to the hole quantum well layer. At least one of the electron quantum well layers is GaNAs. The electron quantum well layers and hole quantum well layer form a first quantum well stage. The active region can include a plurality of the quantum well stages adjacent to each other having the same structure as the first quantum well stage. The structure can include a transitional layer of GaN between each quantum well stage.

An inventive QW structure can be grown by III-V semiconductor MOCVD/MBE epitaxy and molecular beam epitaxy (MBE). However, for manufacturing considerations such as high-throughput, the use of metal organic chemical vapor deposition (MOCVD) growth may be preferred.

Incorporation of dilute N into a GaAs QW regime results in conduction band edge splitting and reduction of transitional energy gap. Conduction band edge splitting is defined as the creation of two energy level states (E+ and E−) in the conduction band, due to the existence of a narrow resonant impurity energy state inside the conduction band. Transient energy gap is the energy gap from a lower conduction energy level (where electrons reside) to the top of a valence band (where holes reside). The transition from E− state to the top of valence band states results in reduced transitional energy.

FIG. 1A of the drawings is a schematics of a type-II InGaN QW and FIG. 1B is a type-II InGaN—GaNAs QW structure formed by introducing a thin layer of N-rich GaNAs QW (As-content ~1.5-8%) sandwiched by InGaN QW layers.

Electron-hole wavefunction overlap plays a role in the radiative recombination rate of a QW. Large spontaneous emission rate and stimulated emission rate and optical gain are proportional quadratically to Γe−h, where Γe−h is defined as overlap of the electron and hole wave functions in an active region. Electron-hole wavefunction overlap is related to the radiative recombination rate of the QW. A radiative recombination rate of a QW is proportional quadratically to Γe−h. Large radiative recombination rates of QW can provide high efficiency LEDs and low threshold lasers. According to the invention, energy band lineup of the FIG. 2B structure can be engineered to take advantage of its polarization-induced electric field to improve electron-hole wavefunction overlap (Γe−h) over that of the type-I nitride QW.

The invention can provide an InGaN—GaNAs type-II QW structure that has extended emission wavelength coverage and large electron-hole wavefunction overlap. For example, the addition of 2% As into a GaN layer reduces transitional energy gap to ~2.7 eV, which is 700 meV lower than that of bulk GaN. Additionally, the low As-containing GaNAs regime may have improved device characteristics such as improved Jvo due to a higher Γe−h, resulting in improved optical gain. A low As-containing GaNAs regime can extend emission wavelength of a type-II QW from blue to a yellow green. Features of the invention will become apparent from the drawings and following detailed discussion, which by way of example without limitation describe preferred embodiments of the invention.

EXAMPLES

The EXAMPLES are based on numerical models of QW gain media including models of an inventive type II InGaN—GaNAs QW gain media that emit from ~450 nm (blue) up to ~550 nm (yellow green) with improved overlap (Γe−h>65-70%).

As matters of definition, an energy band lineup calculation is a method to compute energy band edges of conduction bands and valence bands of different types of semiconductor materials. Energy band lineup is used to determine transition wavelength and electron-hole wavefunction overlap (Γe−h). The term “wurtzite band edge energies” refers to energy band edges of semiconductor materials that are in a hexagonal crystal configuration. Band structure parameters are experimentally-measured material parameters used as inputs to calculate the energy band lineup, e.g., energy gap, effective mass and affect of strain. In the drawings, Ψ is wavefunction. In FIGS. 2A, 2B, 3A, 3B, 4A and 4B, Ψp is electron hole wavefunction and Ψs is the heavy hole wavefunction. The term “graded” means arranged in steps, degrees or series according to an ascending or descending value progression. In this application, the value progression is In-content, as hereinafter described.

The numerical models of the EXAMPLES were constructed according to the following. In a first step, concentration profiles of In and dilute As-species were defined as functions of position along a growth axis. These concentration profiles were incorporated into an energy band lineup calculation for a proposed type-II QW structure, based on Kane’s model for wurtzite band edge energies and Luttinger-Kohn’s model for band structure parameters.

Effects of strain were evidenced by band edge energy shifts and polarization-induced electric field as manifested in energy band bending. Quantum-confined electron and hole energy levels were computed using effective mass approximation according to a propagation matrix for multilayer heterostructures.

The following EXAMPLES are based on mathematical models developed according to the following. A structure was postulated having GaN layers and a type II quantum well comprising an InGaN layer and a GaNAs layer. Valence band edge of the GaN layers was equated to a reference energy Ev. The GaN heavy hole band edge Eν was calculated as follows:

$$E_{\nu,\text{GaAs}} = E_{\nu,\text{InAs}} + \Delta_{\nu},$$

where Δν = Δνp is crystal field, split-off energy and 3εν = Δεν. Δν is spin-orbit, split-off energy. Conduction band edge of unstrained GaN layers Ev was obtained, by adding the energy gap to valence band edge energy levels:

$$E_{\nu,\text{GaAs}} = E_{\nu,\text{GaAs}} + \Delta_{\nu} + \Delta_{p} = \Delta_{c}$$

For the case of strained InGaN QW, the energy gap was given as (in eV):

$$E_{\nu,\text{InGaN}}(x) = E_{\nu,\text{GaAs}} + 2x\Delta_{c}$$

(1)
where x is In content and b is the bowing parameter of wurtzite InGaN.

A strain tensor in the InGaN QW layer was calculated as follows:

$$
\varepsilon_{xx} = \varepsilon_{yy} = \frac{\alpha_{c} - \alpha}{\alpha_{0}}
$$

(4)

where α_{c} is the lattice constant of GaN and α is the interpolated lattice constant of strained InGaN QW layers. Perpendicular strain tensors were expressed as:

$$
\varepsilon_{zz} = -2 \frac{C_{13}}{C_{33}} \varepsilon_{xx}
$$

(5)

where C_{13} and C_{33} are the interpolated elastic stiffness constants. Conduction and valence band offset (ΔE_{c} and ΔE_{v}) between GaN and InGaN QW followed from the 70:30 ratio, hence the heavy hole band edge of InGaN QW was given as:

$$
E_{hh,\text{InGaN}} - E_{hh,\text{GaN}} = \Delta E_{c} + \Delta E_{v} + \Delta E_{c,\text{InGaN}} + \Delta E_{v,\text{InGaN}}
$$

(6)

Due to the presence of strain, the heavy hole band edge was shifted according to:

$$
E_{hh,\text{InGaN, strained}} = E_{hh,\text{InGaN}} + \theta \varepsilon_{zz} + \lambda
$$

(7)

where θ and λ are strain-induced energy shifts and were expressed as follow:

$$
\theta = D_{1} \varepsilon_{xx} + D_{2} \varepsilon_{yy}
$$

(8)

$$
\lambda = D_{3} \varepsilon_{xx} + D_{4} \varepsilon_{yy}
$$

(9)

where D_{1}, D_{2}, D_{3}, and D_{4} are the deformation potentials of nitride semiconductors.

There is a hydrostatic energy shift P_{xx} associated with conduct band of the InGaN QW:

$$
P_{xx} = \alpha_{c} \varepsilon_{xx} + \alpha_{v} \varepsilon_{yy}
$$

(10)

where α_{c} and α_{v} are the conduction band deformation potentials and are assumed to be equal. The strained InGaN QW conduct band edge E_{c} was calculated by:

$$
E_{c,\text{InGaN, strained}} = E_{c,\text{GaN}} + \theta \varepsilon_{zz} + \lambda
$$

(11)

Flat conduction band alignment between GaN and GaAs with 2 eV valence band offset was assumed in developing valence band hybridization information for the N-rich GaNAs model. Heavy hole band edge of GaNAs model was expressed as:

$$
E_{hh,\text{GaNAs}} = \frac{E_{hh,\text{GaN}} - E_{hh,\text{GaNAs}}}{C_{33}}
$$

(12)

The energy gap of GaNAs was attributed to transition between the GaN conduction band edge and was calculated by virtual crystal approximation (VCA) assuming a new valence band edge formed by hybridization of As-like states and the GaN valence band. The transitional gap of the N-rich GaNAs model, was linearly extrapolated as (in eV) from experimental data for low As-content up to 8%:

$$
E_{P_{xx},\text{GaNAs}}(y) = 4.565 + 2.7078
$$

(13)

Polarization effect was calculated as follows: Spontaneous and piezoelectric polarization-induced electric field information was incorporated into the energy band lineup for a multilayered heterostructure, electric field E_{j} in layer j according to:

$$
E_{j} = \sum_{k} \frac{k_{j,\text{P}_{\text{net}}} \cdot P_{\text{net},k}}{e_{k}} - \sum_{k} \frac{P_{\text{net},j,\text{P}_{\text{net}}}}{e_{k}} - \sum_{k} \frac{P_{\text{net},j,\text{P}_{\text{net}}}}{e_{k}}
$$

(14)

Summations on all layers including the j_{ph} layer, $P_{\text{net},j,\text{P}_{\text{net}}}$, and e_{k} were total polarization, thickness and dielectric permittivity of layer k. Total polarization P_{net} was:

$$
P_{\text{net}} = P_{\text{net},\text{P}_{\text{net}}} + P_{\text{net},\text{P}_{\text{ph}}}
$$

(15)

where $P_{\text{net},\text{P}_{\text{net}}}$ and $P_{\text{net},\text{P}_{\text{ph}}}$ were the piezoelectric and spontaneous polarization, respectively. The summations were calculated as functions of In content for InGaN QW models:

$$
P_{\text{net},\text{P}_{\text{net}}}(x) = 0.148x - 0.0424x^{2}(1-x)
$$

(16)

and

$$
P_{\text{net},\text{P}_{\text{ph}}}(x) = 0.042x - 0.034(1-x)(x + 0.037x^{2}(1-x)
$$

(17)

Dielectric constants of the InGaN models were calculated according to (18):

$$
e_{\text{InGaN}}(x) = 4.33x + 10.28
$$

(18)

Example 1

In this example, Stark effect is the affect of an electric field on electronic band structure in semiconductors. For quantum-based devices, the Stark effect is referred to as quantum confined Stark effect. In nitride-based semiconductors, polarization induced electric field leads to bending of both conduction band and the valence bands. A Band-bending effect can be observed for a QW as quantum-confined Stark effect and spatial separation of peak electron and hole wavefunction.

FIGS. 2A and 2B show a comparison of electron-hole wavefunction overlap ($\Gamma_{e\text{-hh}}$) in type-I InGaN QW without (FIG. 2A) and with (FIG. 2B) polarization effect. Polarization increases with In-content. Hence the higher an In-content, the more the bending and the lower the reduction in overlap. As a result, electron-hole wavefunction overlap ($\Gamma_{e\text{-hh}}$) is severely reduced with increasing QW thickness and higher In-content in a InGaN QW.

Electron-hole wavefunction overlap ($\Gamma_{e\text{-hh}}$) is related to the radiative recombination rate of the QW. Large radiative recombination rates of QW can lead to high efficiency LEDs and low threshold lasers, in the FIG. 2B type-I QW, energy band bending separates the electron and hole wavefunctions from one another, thus leading to a much reduced overlap, $\Gamma_{e\text{-hh}}$. Significant reduction in $\Gamma_{e\text{-hh}}$ was observed with the FIG. 2B polarization affect.

In FIG. 2A (without polarization affect), a flat band, condition (no presence of electric field that bends the energy band edges) was assumed. Both electrons and holes were confined in the center of the InGaN QW, as indicated by the coincidental peaks of electron and hole wavefunctions Ψ_{e} and Ψ_{hh} (FIGS. 2A and 2B also show conduct band for each of Ψ_{e} and Ψ_{hh} with an energy level base line.) A large electron-hole wavefunction ($\Gamma_{e\text{-hh}} = 97.5\%$) resulted from the flat band lineup condition shown in the figures, with, peak emission of 417-nm. A flatband lineup condition is an energy band lineup condition when the energy bands are not influenced by polarization induced electric field.

In a polar semiconductor such as a nitride semiconductor, an electric field bends a conduction and valence band and consequently peaks of electron and hole wavefunctions are
spatially separated from one another. The spatial separation of electron and hole wavefunctions represents a charge separation that can reduce overlap to only 34.5% with emission wavelength significantly redshifted, resulting in peak emission of ~463-nm. The reduced electron-hole wavefunction overlap ($\Gamma_{e,h}$) in type-I InGaN QW due to the polarization effect leads to severe reduction in its optical gain ($\sim\Gamma_{e,h}$), thus resulting in high-threshold carrier and current density operation for the conventional nitride-based laser devices.

Example 2

FIG. 3B shows energy band lineup of a type-II InGaN—GaNAs QW with 15% In and 2% As. A lineup of the type-I InGaN QW structure with 15% In is shown for comparison purposes in FIG. 3A.

FIG. 3A shows a spatial separation of electron and hole wavefunctions that results in a low $\Gamma_{e,h}$ of 34.5% for the type-I InGaN QW structure. FIG. 3B shows the type-II QW electron wavefunction peak substantially coincident with that of its hole wavefunction peak. This represents a significant improvement in electron-hole wavefunction overlap as contrasted to the type-I QW. FIG. 3C illustrates that combinations of In- and As-content of the type-II InGaN—GaNAs QW can be engineered to affect energy band lineup to further advantage of the polarization-induced electric field inherent in nitride semiconductors.

Example 3

FIG. 4A illustrates electron-hole wavefunction overlap ($\Gamma_{e,h}$) for the FIG. 4B InGaNGaNAs type-II QW. The FIG. 4B structure comprises a GaN layer and a type-II quantum well active region over the GaN layer, the active region comprising a 10 Å GaN$_{0.98}$As$_{0.02}$ layer sandwiched between a 25 Å In$_{0.15}$Ga$_{0.85}$N layer and a 5 Å In$_{0.1}$Ga$_{0.9}$N layer with a GaN barrier layer. FIG. 4A shows a high $\Gamma_{e,h}$ of 65.2% is obtained for emission wavelength (λ_e) in the blue regime (450-nm), approximately two times that obtained in a type-I InGaN QW.

This EXAMPLE illustrates that layer thicknesses and compositions of the invention type-II QW structure can be adjusted to provide different wavelength emissions. In this EXAMPLE, the FIG. 4B structure is adjusted to give a peak emission wavelength in the blue regime (λ_e=450-nm), while maintaining high $\Gamma_{e,h}$ of 65.2%. A type-I InGaN QW emitting in the same regime has a lower $\Gamma_{e,h}$ of <30% as illustrated in FIG. 3A.

For a fixed thickness λ_e for a type-I InGaN QW may be lengthened by increasing In content. However, increased In content can increase the QW defect density and phase separation. For example, typical In$_{x}$Ga$_{1-x}$N QW requires an In content close to 20% for λ_e=450-nm. On the other hand, one of the inventive InGaNGaNAs QWs requires only 15% In and 2% As for emission in the same regime. Lower In content is required in the inventive InGaNGaNAs QW to achieve the same emission. The lower In-content InGaNGaNAs QW results in lower strain with respect to the GaN substrate, thus allowing the threading dislocation density to be reduced in the materials. Lower In-content also results in less phase separation in the materials, where “phase separation” is compositional fluctuation in the materials.

Example 4

FIG. 5A shows effect of As-content on wavelength λ_e and electron-hole wavefunction overlap $\Gamma_{e,h}$ for the FIG. 5B structure. The FIG. 5B structure comprises a GaN layer and a type-II quantum well active region over the GaN layer. The type-II active region comprises a 10 Å GaN$_{0.98}$As$_{0.02}$ layer sandwiched between a 25 Å In$_{0.15}$Ga$_{0.85}$N layer and a 5 Å In$_{0.1}$Ga$_{0.9}$N layer with a GaN barrier layer.

FIG. 5A illustrates that as type-II QW As-content is increased from 1.5%-8%, emission wavelength (redshift) is significantly extended by approximately 45 nm, accompanied by less than 5% $\Gamma_{e,h}$ decrease. Also, FIG. 5A illustrates that a high $\Gamma_{e,h}$ of 60%-70% can be maintained over this As-content range. The FIG. 5A results illustrate efficacy of dilute As content (from about 1.5%-8%) as a range to permit significant emission wavelength extension (by 45-nm) while maintaining high electron-hole wavefunction overlap ($\Gamma_{e,h}$=60%-70%).

Example 5

FIG. 6A shows In content effect on wavelength λ_e and electron-hole wavefunction overlap $\Gamma_{e,h}$. A sharp drop in $\Gamma_{e,h}$ at around In-content >18% can be attributed to shift in hole confinement. FIG. 6A shows that increasing the In-content in the bottom InGaNGaN QW layer leads to a different trend. Both electron-hole wavefunction overlap and peak emission wavelength increase with increasing In-content (triangular line). Overlap $\Gamma_{e,h}$ is substantially constant (dotted line) in the high 65%-70% range. However, a sharp drop in $\Gamma_{e,h}$ occurs as In-content is increased in the low range (48%), while the peak emission wavelength continues to increase.

The EXAMPLES 2 through 5 show that type-II InGaN—GaNAs QW can be engineered to take advantage of the energy band bending caused by inherent polarization-induced electric field to provide a QW structure that emits at 420-550 nm or beyond, while maintaining a large electron-hole wavefunction overlap. A high electron-hole wavefunction overlap of more than three times that of type-I InGaN QW can be achieved from the invention type-II QW structure. The type-II QW structure provides long visible emission wavelength with improved optical gain. Polarization engineering of the type-II QW band lineup can suppress active region charge separation.

Example 6

In an embodiment, the invention relates to a high-performing, high-efficiency gallium nitride-based light emitting diode (LED) and laser diode that emit in the visible regime from about 420-nm up to about 650-nm. Another embodiment provides a high efficiency blue-green-red gain media that can be integrated into a single semiconductor chip to achieve a high performance solid state lighting that may replace general illumination light sources such as fluorescent and incandescent lamps. The invention can provide a lower-cost, high-performance diode laser in the green regime that may replace bulky and expensive frequency-doubled Nd:YAG-based lasers and Argon-ion lasers for medical therapy and diagnostic applications.

FIG. 7 is a sectional view of an active region of a laser diode structure according to an example application of the present invention. The figure illustrates an LED structure having a type-II InGaN—GaN multiple quantum well active region. The nine quantum well active region 14, as illustrated in FIG. 2, is shown to include QW layers 210, 220, 230, 240, 250, 260, 270, 280, 290, respectively, between GaNAs-based barrier layers 205, 215, 225, 235, 245, 255, 265, 275, 285, 295. In one example application, this illustrated structure is
formed with each of the respective thicknesses of the QW layers \(10, 20, 30, 40, 50, 60, 70, 80, 90\) being 65 Angstroms, and each of the respective thicknesses of the GaNAs-based barrier layers \(205, 215, 225, 235, 245, 255, 265, 275, 285, 295\) being 200 Angstroms. An example set of compositions of each of the QW layers and the GaNAs-based barrier layers is Ga\(_{0.02}\)In\(_{0.08}\)N, sub.0.017As, sub.-0.987 and GaN\(_{0.32}\)As\(_{0.68}\), respectively. In the Fig. 7 example, the first layer above the substrate can be a low temperature GaN, followed by n-doped GaN, n-doped AlGaN cladding, n-doped GaN waveguide, InGaAs—GaNAs Type II QW, p-doped GaN waveguide, p-doped AlGaN cladding and a p-doped GaN contact layer.

Thickness of the quantum well of the invention can depend on desired spacing between energy levels and the difference in the InGaN layer thickness can be part of the electron and hole wavefunction engineering for achieving large overlap. In examples for energy levels greater than a few tens of meV, the critical dimension is approximately a few hundred angstroms. In embodiments, the QW GaNAs layer can have a thickness of about 3 Å to about 30 Å, desirably 5 Å to 15 Å and preferably 8 Å to 12 Å. The GaNAs layer comprises a low As-content of only about 0.5 to 15 molar percent, desirably between 1.5 to 10 molar percent and preferably 2 to 8 molar percent. And in an embodiment, the GaNAs layer is sandwiched, between about 10 Å to about 40 Å InGaN layer and about 3 Å to about 20 Å InGaN layer.

The GaNAs layer can be surrounded by InGaN quantum well layers of different thicknesses. In an invention embodiment, different InGaN layer thicknesses are provided as part of electron and hole wavefunction engineering to achieve large overlap. As illustrated in the above figures, the polarization field in the nitride semiconductor leads to asymmetric band bending. Different InGaN layer thicknesses can be engineered to compensate for the bending. In embodiments of the invention, one InGaN layer is about 10 Å to about 40 Å, desirably 20 Å to 30 Å and preferably 23 Å to 28 Å in thickness. A second narrower layer is about 0.5 Å to 20 Å, desirably 1 Å to 9 Å and preferably 3 Å to 7 Å in thickness.

Example 7

FIG. 8A shows conduction and valence band lineup of a type-II In\(_{0.16}\)Ga\(_{0.84}\)N—GaN\(_{0.32}\)As\(_{0.68}\) QW. The QW hole is confined in the center GaNAs QW layer and the peaks of the electron and hole wavefunctions coincide with one another giving rise to high electron-hole wavefunction overlap \(\Gamma_{e-hb}\). However as shown by FIG. 8B, for In-content beyond 18%, the affect of the polarization-induced electric field is so significant, that steep bending of the valence band edge is caused. As a result of this steep bending, the hole confinement is shifted and the hole is now confined in the bottom InGaN QW layer (no longer confined in the center GaNAs layer). This shift in hole confinement leads to spatial separation of the hole and electron wavefunction peaks. This results in detrimental reduction in overlap, \(\Gamma_{e-hb}\) down to \(~35.5\)% in this EXAMPLE.

Example 8

Grading In-content in the bottom InGaN QW resolves the issue of EXAMPLE 7. FIG. 9A is a conduction and valence band lineup of a graded type-II InGaN—GaNAs QW schematically represented in FIG. 9B. In this EXAMPLE, multiple layers of InGaN QW were grown with various thicknesses. In was gradually incorporated into each InGaN layer to provide layers with graded In content from layer to layer. The graded In-content resulted in a longer emission wavelength. Steep bending of the valence band edge was minimized to maintain a high electron-hole wavefunction overlap.

The FIG. 9B structure demonstrates this concept. FIG. 9B is an example of a graded type-II In\(_{0.02}\)Ga\(_{0.98}\)N—GaN\(_{0.32}\)As\(_{0.68}\) QW structure. In this structure, the thicknesses of the multiple bottom InGaN QW layers were varied from 6-12 Å, while In-content in the bottom InGaN QW was graded from 15-30%. FIG. 9A shows that a very high overlap \(\Gamma_{e-hb} > 65.9\)% was achieved, with peak emission wavelength in the green regime (\(\lambda = 515.6\) nm). A conventional, type-I InGaN QW emitting in the same green regime only resulted in a very low overlap, \(\Gamma_{e-hb} \sim 25-30\)%.

Example 9

FIG. 10B is another example of multiple bottom InGaN QW layers with graded In-content. This EXAMPLE illustrates the graded In-content QW with a higher In-content. In FIG. 10B, bottom InGaN QW layer thicknesses was varied from 6-10 Å, with the In-content graded from 10%-38%. FIG. 10A shows that this graded type-II InGaAs—GaNAs QW structure pushes the peak emission wavelength to greenish-yellow regime (\(\lambda \approx 529\) nm) while maintaining a very high overlap \(\lambda_{e-hb} \sim 70\)%.

An inventive type-II quantum well semiconductor laser can be a component in a host of products, including compact disk players and laser printers, and play important roles in optical communication schemes. Laser operation depends on the creation of nonequilibrium populations of electrons and holes, and coupling of electrons and holes to an optical field, which will stimulate radiative emission. Quantum wells provide an active layer in such lasers: the carrier confinement and nature of the electronic density of states results in efficient devices operating at lower threshold currents than lasers with “bulk” active layers. In addition, the use of a quantum well, with discrete transition energy levels dependant on the quantum well dimensions (thickness), provides a means of “tuning” the resulting wavelength of the material.

While preferred embodiments of the invention have been described, the present invention is capable of variation and modification and therefore should not be limited to the precise details of the Examples. The invention includes changes and alterations that fall within the purview of the following claims.

What is claimed is:
1. A type II quantum well (QW) comprising:
 a first semiconductor layer forming a quantum well for electrons, said first semiconductor layer having a first bandgap characteristic;
 a second semiconductor layer formed on the first semiconductor layer, the second semiconductor layer forming a quantum well for holes and comprising at least one GaNAs layer, said second semiconductor layer having a second bandgap characteristic different from said first bandgap characteristic and;
 a pair of third semiconductor layers collectively sandwiching said first and second semiconductor layers, said pair of third semiconductor layers having a third bandgap characteristic greater than said first and second bandgap characteristics.

Example 10

FIG. 11B is another example of multiple bottom InGaN QW layers with graded In-content. This EXAMPLE illustrates the graded In-content QW with a higher In-content. FIG. 11B, bottom InGaN QW layer thicknesses was varied from 10-12 Å, with the In-content graded from 15%-30%. FIG. 11A shows that this graded type-II InGaAs—GaNAs QW structure pushes the peak emission wavelength to greenish-yellow regime (\(\lambda \approx 529\) nm) while maintaining a very high overlap \(\lambda_{e-hb} \sim 70\)%.

An inventive type-II quantum well semiconductor laser can be a component in a host of products, including compact disk players and laser printers, and play important roles in optical communication schemes. Laser operation depends on the creation of nonequilibrium populations of electrons and holes, and coupling of electrons and holes to an optical field, which will stimulate radiative emission. Quantum wells provide an active layer in such lasers: the carrier confinement and nature of the electronic density of states results in efficient devices operating at lower threshold currents than lasers with “bulk” active layers. In addition, the use of a quantum well, with discrete transition energy levels dependant on the quantum well dimensions (thickness), provides a means of “tuning” the resulting wavelength of the material.

While preferred embodiments of the invention have been described, the present invention is capable of variation and modification and therefore should not be limited to the precise details of the Examples. The invention includes changes and alterations that fall within the purview of the following claims.

What is claimed is:
1. A type II quantum well (QW) comprising:
 a first semiconductor layer forming a quantum well for electrons, said first semiconductor layer having a first bandgap characteristic;
 a second semiconductor layer formed on the first semiconductor layer, the second semiconductor layer forming a quantum well for holes and comprising at least one GaNAs layer, said second semiconductor layer having a second bandgap characteristic different from said first bandgap characteristic and;
 a pair of third semiconductor layers collectively sandwiching said first and second semiconductor layers, said pair of third semiconductor layers having a third bandgap characteristic greater than said first and second bandgap characteristics.
characteristics, said pair of third semiconductor layers acting as barrier layers to electrons and holes; wherein at least one of said first and second semiconductor layers comprises at least one InGaN layer comprising a graded molar In concentration.

2. The type II quantum well (QW) of claim 1, wherein the InGaN layer comprises a molar In concentration that varies in degrees according to an ascending or descending progression.

3. The type II quantum well (QW) of claim 1, wherein the InGaN layer is graded and comprises at least one InGaN layer having >18% molar In concentration.

4. The type II quantum well (QW) of claim 1, wherein the type II quantum well comprises about 3 Å to about 30 Å of the GaNAs layer sandwiched between about 10 Å to about 40 Å of a graded InGaN layer and about 3 Å to about 20 Å of another InGaN layer, wherein the graded InGaN layer is graded and comprises at least one InGaN layer having >18% molar In concentration.

5. The type II quantum well (QW) of claim 1, wherein the GaNAs layer has a thickness falling in a range of about 5 Å to 15 Å.

6. The type II quantum well (QW) of claim 1, wherein the GaNAs layer has a thickness falling in a range of about 8 Å to 12 Å.

7. The type II quantum well (QW) of claim 1, wherein the QW forms an edge-emitting laser.

8. A multilayer semiconductor structure comprising: a pair of barrier layers of a material having a bandgap characteristic greater than that of InGaN and GaNAs; an active region sandwiched between said pair of barrier layers, said active region comprising: a pair of InGaN layers, at least one of said pair of InGaN layers being a graded InGaN layer having an In concentration that is graded; and a GaNAs layer sandwiched between and abutting said pair of InGaN layers; wherein said GaNAs layer and said pair of InGaN layers have respective thicknesses causing the layers to cooperatively provide a type II quantum well (QW) active region trapping electrons and holes in separate layers.

9. The multilayer semiconductor structure of claim 8, wherein the GaNAs layer has a thickness of 5 Å to 15 Å.

10. The multilayer semiconductor structure of claim 8, wherein the GaNAs layer has a thickness of 8 Å to 12 Å.

11. A multilayer semiconductor structure comprising: a GaNAs layer having opposed first and second sides; a first InGaN layer abutting said first side; and a graded InGaN layer abutting said second side, said graded InGaN layer having a graded molar In concentration; said GaNAs layer and said first and graded InGaN layers having distinctly different bandgap characteristics and cooperating to provide a type II quantum well active region trapping electrons and holes in separate layers.

12. The multilayer semiconductor structure of claim 11, wherein said graded InGaN layer comprises a plurality of abutted discrete InGaN layers, each of said plurality of InGaN layers having a molar In concentration different from a respective molar In concentration of its abutting InGaN layer.

13. The multilayer semiconductor structure of claim 12, wherein the respective molar In concentrations of said plurality of InGaN layers vary in an ascending or descending progression.

14. The multilayer semiconductor structure of claim 12, wherein the respective molar In concentrations of said plurality of InGaN layers increase with decreased distance from said GaNAs layer.

15. The multilayer semiconductor structure of claim 12, wherein at least one of said plurality of graded InGaN layers has a molar In concentration greater than 18%.

16. The multilayer semiconductor structure of claim 12, wherein at least one of said plurality of graded InGaN layers has a molar In concentration within a range from 10% to 38%.

17. The multilayer semiconductor structure of claim 11, wherein said GaNAs layer has a thickness of about 3 Å to about 30 Å, said first InGaN layer has a thickness of about 5 Å to about 20 Å, and said graded InGaN layer has a thickness of about 10 Å to about 40 Å and a molar In concentration that is graded from 10% to 38%.

18. The multilayer semiconductor structure of claim 11, wherein the GaNAs layer has a thickness of 5 Å to 15 Å.

19. The multilayer semiconductor structure of claim 11, wherein the GaNAs layer has a thickness of 8 Å to 12 Å.