Sensor Networking

- Military systems frequently employ sensors connected by communication networks.

- Becoming more popular in commercial applications.

- Trend towards simple, less expensive, sensor nodes carrying their own power connected by wireless networks.
Outline

What do we mean by “Sensor Networking for Detection”?
- Example applications

Distributed Detection
- Problem definition
- Review of some results

Energy Savings
- Goal and censoring approach
- New ordering approach

MIMO Radar
- Network of radars concept
- Diversity and resolution gains

Outline

What do we mean by “Sensor Networking for Detection”?
- Example applications
Numerous Other Non-military Applications

Weather monitoring

Bioimaging, biosciences: Cell imaging

Animal monitoring

Structure monitoring
UMASS Distributed Radar

Nanotechnology: Small Sensor Trend

- Development of signal processing for large array of nanotechnology-based sensors to detect chemical leaks.

Interdigitated electrode structure for chemical sensors.
Signal Detection Sensor Networks

- All these applications (and many others) attempt to solve a hypothesis testing problem

 - H_0: $f_{X}(x_1, ..., x_N|H_0)$ is joint pdf of observations at sensors one through N

 - versus

 - H_1: $f_{X}(x_1, ..., x_N|H_1)$ is joint pdf of observations at sensors one through N

 - Probability of error = $\text{Prob(we choose wrong)} = P_e$

Outline

Distributed Detection

- Problem definition
- Review of some results
Who are working on Distributed Detection?
Distributed Signal Detection

- If observations independent from sensor to sensor under hypothesis

\[f_{X}(x_{1},...,x_{N}|H_{j}) = f_{X}(x_{1}|H_{j})f_{X}(x_{2}|H_{j})\cdots f_{X}(x_{N}|H_{j}), \]

then optimum sensor tests quantize the likelihood ratio (LR) — Tsitsiklis, Willet, Reibman, Viswanathan

- This simplifies the task of finding optimum sensors from a functional optimization to that of finding a few unknown scalars, the sensor thresholds.

Distributed Signal Detection

- If the observations are statistically dependent from sensor to sensor under a given hypothesis, then the problem is hard in general.

- If observations are dependent from sensor to sensor, can show that the task of finding optimum sensor rules is NP-complete in general — Tsitsiklis

Distributed Signal Detection

- For the special case of weak signals (LO) in additive noise with general pdf \(f \), we can again simplify the problem to finding a set of scalar unknowns.

- Let \(f'' \) and \(f' \) be derivatives of the noise pdf with respect to its argument. Optimum sensor decisions for random signals (\(x_1 \), the observation) made using

\[
\frac{f''(x_1)}{f(x_1)} + a_1 \frac{f'(x_1)}{f(x_1)} > t_1
\]

Need to find \(a_1 \) and threshold \(t_1 \)

Distributed Signal Detection

- The optimum test at sensor one:

\[
\frac{f''(x_1)}{f(x_1)} + a_1 \frac{f'(x_1)}{f(x_1)} > t_1
\]

can be seen as an attempt to approximate the optimum centralized weak signal (LO) test

\[
\frac{f''(x_1)}{f(x_1)} + 2 \frac{f''(x_1)}{f(x_1)} \frac{f'(x_2)}{f(x_2)} + \frac{f''(x_2)}{f(x_2)} > t_1
\]

where \(a_1 \) involves an expected value of \(\frac{f'(x_2)}{f(x_2)} \) given a decision for \(H_1 \)

Here we assumed \(E\{S_1^2\} = E\{S_2^2\} = E\{S_1 S_2\} \)
Distributed Signal Detection

Approximates correlation detection

AND FUSION

Rick S. Blum, ECE Dept, Lehigh University

Distributed Signal Detection

Approximates energy detection

OR FUSION

Rick S. Blum, ECE Dept, Lehigh University
Distributed Signal Detection

- For cases of nonweak signals, can sometimes find optimum tests analytically.

- For the case of known signals in Gaussian noise, have shown likelihood ratio tests are sometimes optimum at the sensors, sometimes not, and some cases are hard to determine.

Rick S. Blum, ECE Dept., Lehigh University

Outline

Energy Savings
- Goal and censoring approach
- New ordering approach
Assumptions/Definitions

- Observations iid across sensors given $H_j, j=0,1$
- Sensors transmit a real valued quantity to a fusion center where final decision is made
- Consider Bayesian formulation with priors
 \[\pi_0 = \text{Prob}(H_0), \quad \pi_1 = \text{Prob}(H_1) \]
- Define sensor likelihood ratio:
 \[L_i = \frac{f_X(x_i | H_1)}{f_X(x_i | H_0)} \]
- Optimum N sensor (unconstrained) test compares $\sum_{i=1}^{N} \ln(L_i)$ to threshold $\beta = \ln\left(\frac{\pi_0}{\pi_1}\right)$

Popular Energy Efficient Approach: Censoring

- Each sensor transmits only if likelihood ratio sufficiently extreme: $L_i > t_{SU}$ or $L_i < t_{SL}$
- Will reduce transmissions/Energy at cost of loss in P_e
- See (for example):

New Ordering Approach Outlined

- Each sensor decides to transmit on its own, most informative transmit first, stop transmissions when overwhelming evidence for one hypothesis.

- Each sensor transmits L_i after $K/\ln(L_i)$ seconds, $K>0$ arbitrary small, so most informative transmit first

- Stop when sum of log-likelihood ratios of sensor transmitted exceeds t_L or t_U

 \[
 \begin{align*}
 \text{sum of log-likelihood ratios} & < t_L \quad \text{pick } H_0, \\
 \text{sum of log-likelihood ratios} & > t_U \quad \text{pick } H_1
 \end{align*}
 \]

Can choose t_L and t_U, so that energy is saved while P_e same as optimum unconstrained test.

Rick S. Blum, ECE Dept., Lehigh University